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Introduction 

The term “PRION” stands for “protein only” and means 
“infectious protein.” In mammals, prions cause lethal 
neurodegenerative diseases (transmissible spongiform 
encephalopathies, TSEs) such as Scrapie in sheep, bovine 
spongiform encephalopathies (BSE; mad cow disease) of 
cattle and Creutzfeldt-Jakob disease (CJD) in humans. The 
first prion disease Scrapie, was first described in the early 
18th century, its human variety in the 1920s. The nature of the 
TSE disease-causing agent remained a mystery until the 
suggestion by Prusiner (45) of the involvement of novel 
"proteinaceous particles", which he termed prions. It should 
be noted that the initial idea that protein may be the causative 
scrapie agent was made in 1967 (2, 20). 

Wickner (56) proposed that the genetic behavior of the 
Saccharomyces cerevisiae non-mendelian genetic elements 
[PSI+] (10) and [URE3] (1) could be explained if they were 
prions of the Sup35 and Ure2 proteins respectively. Since 
then much evidence has accumulated to support this 
proposal. There are currently four confirmed prions in yeast, 
[PSI+], [URE3], [RNQ+] (12) and [NU+] (42) and genetic 
evidence suggests there may be many more (12). The fact 
that prions exist in yeast provides an ideal environment for 
detailed genetic analysis of factors affecting prion 
propagation and maintenance. 

 
What is a prion? 

When proteins are synthesized on the ribosome, they 
usually adopt only one final 3-dimensional conformation. 
Prion proteins somehow adopt an altered conformation from 
its normal form (by a mechanism that is not understood, but 
is thought to involve some kind of nucleation event, 46) a 
state referred to as the prion conformation. In the case of 
yeast prions, once present the prion form of the protein is 
capable of recruiting newly synthesized protein into the 
prion form and thus deplete the cell of functional protein (Fig. 
1). We should emphasize here that there is no difference in 
the genome between cells carrying or lacking a prion, the 

only difference is the conformational state of the particular 
protein in question. It is therefore reasonable to state that 
proteins can indeed behave as genes, in that they can contain 
inheritable information. 

 The prion conversion does not occur in the whole protein 
but appears to occur in a so-called prion domain. Typical 
prion domains consist of 60 ~ 150 amino acids and the 
conformational change within the prion domain takes the 
credit for prion conversion (27, 34-36). The prion 
conformation is rich in β-sheets and is prone to aggregation 
in which amyloid fibers are formed (17, 18, 28, 52). 
Amyloid is a type of protein aggregate, which forms 
self-sustaining orderly fibers. Amyloid fibers are found 
associated with many chronic diseases (amyloidosis) such as 
prion diseases, Alzheimer disease, polyglutamine expansion 
diseases and type II diabetes (4). The difference between 
prion proteins and other amyloids is that prions are 
transmissible and infectious. Thus, yeast prions have been 
used as a genetic model to study aspects of amyloidosis and 
prion propagation in mammals. 

 
Prions are not always disease associated 

In mammals, prions cause incurable brain diseases. 
However, the prion killer image doesn’t apply in yeast. 
Although, [URE3] causes slower growth of yeast, there 
appears to be no general toxicity of prion aggregates in yeast. 
To the contrary it has been suggested that the [PSI+] prion 
may be beneficial to yeast under certain circumstances. The 
presence of [PSI+] can provide protection to some yeast 
strains against various stresses such as heat shock (14). It has 
also been suggested that the possible production of 
C-terminally extended proteins due to nonsense suppression 
by [PSI+] could act as an aid to evolution (53). Moreover the 
[Het-s] prion of the filamentous fungus Podospora anserina 
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Figure 1.  Illustration of the prion propagation. 
 
is clearly carrying out a normal cellular function (9). The 
possible existence of many eukaryotic prions has been 
postulated by computer aided methods (37) and in genetic 
screens (12). It therefore seems highly likely that many 
different prions will exist naturally and will probably carry 
out normal cellular functions. 

 
Confirming the protein-only hypothesis? 

Yeast prion research has addressed a key feature of the 
prion theory, that is, prion phenomena occur not by classical 
genetic elements (virus, plasmid or other nucleic acid 
replicon) but by infectious proteins. The genetic criteria 
applied by Wickner (56) to suggest that [PSI+] and [URE3] 
are prions is in itself compelling evidence for protein-only 
inheritance. Firstly, he showed [URE3] appears 
spontaneously in certain ratio. This experiment was possible 
because yeast prions are not lethal in yeast and could be 
cured simply by treating them in extremely low 
concentrations (1 ~ 5 mM conc.) of guanidine hydrochloride 
(Gdn-HCl). He found that [URE3] appears spontaneously at 
a low frequency (1/106) cells, and when cured could 
spontaneously appear at a similar frequency [URE3] (Fig. 2). 
This was termed “reversible curability.” Such behavior 
would not be expected for a nucleic acid replicon. Secondly, 
when he overproduced the Ure2 protein the ratio of prion 
appearance was increased (1/104). The idea of this 
experiment is that the frequency with which a prion arises 
should increase if the cellular content of the normal form is 
increased, regardless of the mechanism of prion generation. 
However, a nucleic acid replicon generally does not arise de 
novo regardless of what proteins in the cell overproduced. 

Yeast and filamentous fungi have provided the only 
environments were the actually infective nature of the prion 
form of a protein have been directly assessed. Infectious 

behavior has been demonstrated to varying degrees for 
[PSI+] (51) and [HET-s] (33). 

Yeast prion dependence of the Hsp104 protein and the 
effects of protein chaperones on prion maintenance also add 
credibility to the protein-only nature of these non-mendelian 
genetic elements. 

 
The role of chaperones in prion propagation 

A major contribution of yeast prion research has been to 
identify essential roles for protein chaperones in prion 
appearance and propagation. Chaperones are proteins that 
aid and regulate the correct folding of other proteins. Many 
types of chaperones have been described but only a subset 
exert effects upon yeast prions. The finding that chaperones 
can cure or enhance prion propagation may provide a new 
approach to the treatment of prion/amyloid diseases. 
Chaperones are usually induced by cellular insults such as 
heat shock. Indeed, many protein chaperones have been 
identified in screens to identify heat-shock proteins and thus 
are termed Hsp's. At least 6 groups of Hsp's have been 
identified and are grouped together by molecular weight, 
(Hsp100, 90, 70, 60, 40 and 20). Some Hsp groups have 
sub-family members, for instance, in yeast the Hsp70 family 
consists of 14 different proteins classed together by amino 
acid homology. These Hsp70's function in various 
compartments of the cell and carry out functions such as 
preventing aggregation of denatured or incorrectly folded 
proteins, and aiding protein transport across cell membranes. 

The first reports describing the effects of a protein 
chaperone on prion propagation identified a critical role for 
the Hsp104 protein (6, 8). Hsp104 is a member of the ClpB 
family of Hsp100's and is a "dis-aggregase". It cannot 
prevent unfolded proteins aggregating but it can resolubilize 
an aggregate once it has formed (19, 24, 25, 43). An interme-  
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Figure 2.  Genetic criteria for a prion. 
 
diate level of Hsp104 is required for efficient maintenance of 
[PSI+]. Depletion of Hsp104 activity in the cell by either 
gene deletion or protein inhibition causes the curing of all 
known yeast prions (12, 13, 38, 50). It is postulated that 
Hsp104's ability to break up prion aggregates into smaller 
particles or "seeds" is responsible for efficient transfer of the 
prion from cell to cell (55). Over-expression of Hsp104 can 
cure [PSI+] but has no effect on [URE3] or [RNQ+] (12, 13, 
38). This finding suggests structural differences exist 
between these prions. A single amino acid substitution in 
Hsp104 protein causes dramatic weakening of two prions, 
[PSI+] and [URE3] (24). Also, alterations in the AAA 
protease motif of Hsp104 can affect [PSI+] stability (21). 

Cytosolic Hsp70's have also been implicated in 
maintenance of [PSI+]. Yeast has two sub-classes of cytosolic 
Hsp70's, the Ssa family comprising the Ssa1-4 proteins and 
also the Ssb family comprising the Ssb1 and 2 proteins (11). 
The Ssa1 protein has been implicated in [PSI+] propagation 
both as an antagonist of prion curing by over-expression of 
Hsp104 (41) and in general prion stability (22, 26). Although 
the Ssa1 and Ssa2 proteins are 97% identical they can have 
different effects upon yeast prions. Over-expression of Ssa1 
was capable of efficiently curing [URE3] whereas 
over-expression of Ssa2 was not (49). Deletion of the SSB 
genes caused an increase in spontaneous appearance of  
[PSI+] (7) which can be explained by these ribosome- 
associated protein chaperones having a role in folding of 
newly synthesized polypeptides (39, 44). Over-expression of 
Ssb1 can cure certain "strains" of [PSI+] (5). 

The functions of Hsp70's in protein folding are usually 
carried out in conjunction with an Hsp40 co-chaperone 
partner. This also seems to be the case for Hsp70 effects on 

prions. Over-expression of the Ydj1 protein can cure weak 
forms of [PSI+] (30) and can also cure [URE3] (38). The 
Hsp40 protein Sis1 has been shown to be important for 
maintenance of [RNQ+] prion (32, 50), and the 
uncharacterized Apj1 protein, when over-expressed can cure 
some "strains" of [PSI+] (29). The importance of a direct 
interaction between Hsp70 and Hsp40 in [PSI+] propagation 
is demonstrated by suppression of the prion destabilizing 
SSA1-21 mutation by a second site suppressor that disrupts 
interaction with Hsp40's (24). 

Recently co-chaperones of the tetratricopeptide repeat 
(TPR) family have been implicated in yeast prion propa- 
gation. Over-expression of the Sti1 protein can cure "strains" 
of [PSI+] (29) while mutations in the C-terminal Hsp70 
motif EEVD, required for interaction with TPR proteins are 
capable of suppressing the SSA1-21 mutation (22). 
 
Amyloid- a "special" type of chaperone substrate? 

Because amyloid is formed into a regular ordered 
structure, this raises the possibility that recognition of 
amyloid and prion aggregates by protein chaperones may be 
different from recognition of heat-denatured amorphous 
aggregates. Genetic evidence for this proposal has arisen 
from the array of Hsp104 and Hsp70 mutants available in 
yeast that affect prion propagation. Many mutations exist in 
Hsp70 (22, 26) and Hsp104 (24) that affect prion 
propagation but have no effect on cell growth or cellular 
thermotolerance. This suggests that either amyloid- 
aggregates are more sensitive to the effects of these 
chaperones or that they are recognized differently than 
denatured amorphous aggregates. 
Prions can affect the appearance of other prions 
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The increased appearance of [PSI+] due to overexpression 
of the Sup35 protein was shown to be dependent on the 
presence of another suspected prion called [PIN+] (13). A 
genetic screen revealed the identity of [PIN+] as the [RNQ+] 
prion and also identified an array of putative yeast prions that 
could also behave in a [PIN+]-like manner (12). Similar 
results were observed for strains carrying the less well- 
characterized [NU+] prion (42). 

An antagonistic effect on prion strength and induction has 
also been reported for the [PSI+] and [URE3] prions (49). 
The mechanism for how prions can affect each others 
induction and stability is unknown. Possible models include 
established prion aggregates providing a template for new 
prion aggregates to initiate or due to the sequestration of 
protein chaperones providing an environment favorable for 
new prion formation. 

 
Mechanism of prion curing by guanidine hydrochloride 

Tuite et al (54) showed that an array of chemicals or stress 
treatments were capable of curing [PSI+] to some degree. 
One potent and widely used prion-curing agent is guanidine 
hydrochloride (Gdn-HCl). Medium containing 1-5mM 
Gdn-HCl efficiently cures yeast of all confirmed prions by a 
process that inhibits replication of the prion (15). Yeast cells 
grown in the presence of 1mM Gdn-HCl in liquid culture 
have been estimated to have intra-cellular Gdn-HCl 
concentrations around 20mM (23). The mechanism of 
curing by Gdn-HCl has recently been shown to involve the 
inhibition of Hsp104, effectively creating conditions 
mimicking a deletion of Hsp104 (16, 24, 25, 40). The most 
likely nature of this inhibition is to disrupt the ATPase 
activity of the Hsp104 protein. Although it is beyond 
contention that Gdn-HCl is curing prions predominantly 
through an Hsp104 dependent mechanism, there is some 
evidence that other proteins or pathways capable of exerting 
effects on [PSI+] may also be affected by Gdn-HCl (31, 55). 
The elucidation of this curing mechanism further 
emphasizes the importance of Hsp104 in prion propagation. 

Fungal and plant homologues of Hsp104 have been 
identified, but as yet no mammalian counterpart has been 
isolated. It seems reasonable to assume that such a mecha- 

nism as protein dis-aggregation will have been conserved 
through evolution and a mammalian protein analogous to 
Hsp104 will eventually be identified. Inhibition of such a 
protein may be a potential treatment for prion and amyloid 
diseases. 

 
Conclusion and future prospects 

In almost a decade since Wickner (56) proposed that 
prions exist in yeast, researches in this area have gone a long 
was in proving the protein-only hypothesis. Many cellular 
factors (mostly protein chaperones) have been identified that 
affect yeast prion propagation, most of these factors are 
conserved in mammals. It is through the genetic and 
biochemical analysis of the existing chaperone mutants and 
other cellular factors, in relation to their known cellular 
functions and prion phenotypes, that will allow us to unravel 
the complex nature of prion propagation in yeast. Due to the 
high degree of conservation in protein chaperones, findings 
are likely to be directly relevant to amyloid and prion 
formation in higher eukaryotes. 

Researchers are also exploring some novel uses of prions. 
Prion domains appear modular and transferable. Proteins that 
are not natural prions can be made to behave like prions by 
the addition of the Sup35 prion domain (47). This raises the 
possibility of protein engineering using prion domains. Most 
recently prion fibres have been coated with metal particles 
and been shown to conduct electricity (48). Others have 
found forming prion aggregates does not cause a total loss of 
enzymatic function (3). It may therefore be possible to 
develop immobilized functional proteins using prion fibres 
that will have industrial applications. 

The relatively youthful area of yeast prion research has 
already produced many significant findings and will 
continue to do so for many years to come. The relevance of 
prions in biology is not yet realized and it is through research 
on yeast prions were most of our understanding of this 
relevance has been and will continue to be based upon. 
 
We thank D.C. Masison, C. Schwimmer, R. D. Wegrzyn and 
R. B. Wickner. 
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