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     The production of -glucosidase by Aspergillus oryzae RIB40 and a transformant, 

RIB40-TF harboring the bglA gene was assessed in a liquid-surface immobilization 

(LSI) system that uses particles of a unique polymeric material, a ballooned microsphere. 

In a submerged cultivation system, RIB40-TF produced significantly more -glucosidase 

than RIB40, although the enzyme was not secreted into the medium. However, when 

using the LSI system, RIB40-TF secreted -glucosidase into the liquid medium to a level 

of 1.36 U/ml. Furthermore, we showed that the LSI system was capable of supporting 

repeated production of -glucosidase at least 3 cycles over a period of 39 days. 
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     -Glucosidase (-D-glucoside 

glucohydrolase, EC 3.2.1.21) has recently 

attracted considerable attention for use in 

bioethanol production from cellulose, a 

linear polymer of D-glucose units linked by 

1,4--D-glucosidic bonds. This enzyme 

hydrolyzes cellobiose to D-glucose to 

counteract the inhibition of 

endo-1,4--glucanase (EC 3.2.1.4) and 

cellobiohydrolase (EC 3.2.1.91) by 

cellobiose. Thus, a multicomponent enzyme 

system consisting of -glucosidase, 

endo-1,4--glucanase, and cellobiohydrolase 

is necessary for the commercial production 

of bioethanol from cellulose (1, 2). 

     -Glucosidase is produced by various 

fungi, such as Trichoderma (3), 

Paecilomyces (4), Aureobasidium (5), 
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Alternaria (6), and Aspergillus. Two species 

that have been particularly targeted for the 

production and characterization of 

-glucosidase are Aspergillus niger (7-10) 

and Aspergillus oryzae (11-13). The 

production of -glucosidase by these fungi 

is commonly examined in submerged 

cultivation (SmC), although solid-state 

cultivation (SSC) has also been used (5, 12). 

     It is well known that particular 

cultivation methods influence the production 

and stability of enzymes. Compared to SmC, 

SSC generally enables high enzyme yield 

and enhances the stability of produced 

enzymes (14). For example, the production 

of tannase, pectinase, and polygalacturonase 

by A. niger in SSC is significantly higher 

than that in SmC (15, 16). The higher 

productivity with SSC results from various 

factors:, higher titers and productivities of 

enzymes, low levels of catabolite repression 

and proteolytic digestion, and increased 

stability of the secreted enzymes (14, 17). 

However, SSC has some practical 

disadvantages, such as poor heat dissipation 

and slow diffusion of nutrients, products, 

water, and oxygen in a packed bed (14, 18). 

     Recently, we presented 3 types of 

unique cultivation and application systems 

for fungi: liquid-surface immobilization 

(LSI) (19, 20), a liquid-liquid interface 

bioreactor (L-L IBR) (19, 21, 22), and the 

extractive liquid-surface immobilization 

(Ext-LSI) systems (23). Among these 

systems, LSI displayed enzyme productivity 

superior to SmC for lipase and xylanase. In 

the LSI system (Fig. 1), which consists of a 

liquid medium overlaid by a mat of 

fungus-microsphere (MS), fungal 

differentiation, sufficient nutrient, water and 

Fig. 1. Production of -glucosidase in the liquid-surface immobilization (LSI) 

system. Spores of A. oryzae RIB40 (A) or its transformant RIB40-TF (B) were 

floated on the surface of YPD medium with ballooned microsphere (MS) 

particles. Cultivation in the thick fungus-MS mat used nutrients and water in the 

liquid medium, and oxygen in the atmosphere. The fungus-MS mat exhibited 

high yield of -glucosidase. 
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oxygen supply, and higher enzyme 

production were achieved, despite the 

stationary conditions (19, 20). We expected 

that the LSI system would also be suitable 

for the production of other enzymes, such as 

other hydrolytic enzymes and peroxidases. 

Here, we report the application of the LSI 

system to the production of -glucosidase an 

important enzyme in the production of 

bioethanol from cellulolytic materials with a 

bglA transformant of A. oryzae RIB40. The 

enzyme productivity was compared with 

that of SmC with A. oryzae RIB40; the 

transformant was shown to have a higher 

-glucosidase production capability. 

     By analyzing an A. oryzae DNA 

microarray, the-glucosidase gene (bglA: 

AO090009000356) was seen to be more 

highly expressed in the liquid culture 

medium of the rice bran (data not shown). 

An expression vector containing bglA, 

pNEN-BGLA (12.2 kb), was constructed. 

Plasmid pBGLA, which has a genomic 

fragment containing bglA, was used as a 

template for PCR with the following 

primers: primer 1 (5’- 

ACGCGTCGACGCGTATGAAGCTTGGT

TGGATCGAGGTG-3’/-14-24 in bglA, 

38-mer) which introduces a SalI site 

(underlined) just upstream from the 

translational initiation codon of A. oryzae 

celA, and primer 2 

(5’-ATAGTTTAGCGGCCGCATTCTTATT

TACTGGGCCTTAGGCAG-3’/-2565-2610 

in bglA, 48-mer) which includes a NotI site 

(underlined) downstream from the 

termination codon. Amplification was 

carried out by using LA Taq polymerase 

(Takara-bio Co., Kyoto) in a thermal cycler 

(30 s at 95 °C; 40 s at 55 °C; 60 s at 72 °C; 

25 cycles). The 2627-bp PCR product was 

double digested with SalI and NotI. Then, 

the fragment was cloned into the 

corresponding sites between P-enoA142 and 

T-agdA, a fungal high-level expression 

vector pNEN142 (9.3 kb) (24). P-enoA142 

is the promoter from the A. oryzae enolase 

gene, improved by introducing 12 copies of 

“region III” that had previously been 

discovered to contain cis-acting sequence 

involved in the positive regulation of A. 

oryzae amylases, P-enoA, the promoter A. 

oryzae enolase gene. 

     The resulting plasmid, pNEN-BGLA, 

was introduced into A. oryzae niaD300 

(niaD) according to a previously method 

(25). Transformants were selected based on 

the ability to grow on nitrate resulting from 

the introduction of the entire niaD gene. 

Recombinant -glucosidase activity was 

measured in 50 mM sodium acetate buffer 

(pH 5.0) at 40 °C for 10 min with 1 mM 

p-nitrophenyl -D-glucopyranoside. One 

unit of -glucosidase activity in the 

supernatant, isolated by filtration (pore size, 

0.45 m), was defined as the amount of 
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enzyme that released 1 mol of 

p-nitrophenol per min. 

     We then examined the -glucosidase 

yield of the transformants. The transformant 

and the untransformed host were grown for 

3 days in YPD medium (1% yeast extract, 

2% peptone, 2% dextrose, pH 6.5), after 

which they were analyzed for -glucosidase 

activity. The specific -glucosidase activity, 

prepared from a cell extract of transformant 

RIB40-TF, was 130-fold higher than that of 

RIB40, and reached 1.03 U/ml in SmC. 

However, neither strains secreted significant 

-glucosidase into the medium, similar to 

the situation reported for Volvariella 

volvacea (26) and Trichoderma reesei (27). 

     Next, RIB40 and RIB40-TF were 

applied to the LSI system for the production 

of -glucosidase. Spore suspension (final 

concentration, 1 × 10
6
 spores/ml) and 10 ml 

of ballooned polyacrylnitrile microspheres 

(MMS-DE-1 [former MFL-80SDE]: mean 

diameter, 40 μm; density, 0.06; Matsumoto 

Yushi-Seiyaku, Co., Ltd., Osaka) were 

mixed with 50 ml of YPD medium and 

poured into a polypropylene vessel (55 mm 

i.d. × 70 mm). After precultivation (30 °C, 

without shaking, 3 days), -glucosidase 

accumulation in the YPD medium was 

determined over an 18-day period. As shown 

in Fig. 2A, although RIB40  accumulated 

little -glucosidase in the medium, 

RIB40-TF secreted significant amounts of 

-glucosidase (maximum 1.36 U/ml) in the 

medium up to day 11. -Glucosidase 

specific activity of RIB40-TF was 667-fold 

Fig. 2. Time course of -glucosidase and total protein production by A. oryzae 

RIB40 and its transformant, RIB40-TF, in the LSI system. (A) Production of 

-glucosidase; (B) production of total protein. Open circles/triangles: RIB40; closed 

circles/triangles: RIB40-TF. 
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higher than that of RIB40. However, 

-glucosidase activity gradually reduced 

after this time. It is assumed that prolonged 

cultivation leads to digestion of 

-glucosidase by endogenous proteases. The 

levels of other proteins in the medium were 

higher with RIB40 than with RIB40-TF (Fig. 

2B). This might have resulted from titration 

of common regulatory proteins that interact 

with Region III (pNEN-BGLA) (28). 

     Finally, production of -glucosidase 

with RIB40-TF was performed in an LSI 

system that used a 600 ml polypropylene 

vessel with inlet and outlet ports. A mixture 

of spore suspension (final concentration, 10
6
 

spores/ml), 40 ml of MMS-DE-1, and 300 

ml of YPD medium was poured to the vessel. 

A magnet was put to a bottle in the vessel, 

and a polypropylene net was included to 

stabilize the fungus-MS mat. After 

precultivation (30 °C, without shaking, 3 

days), -glucosidase production in the 

medium was periodically determined. The 

medium was exchanged with fresh YPD 

medium (300 ml) at days 15 and 27. As 

shown in Fig. 3, repeated batch production 

of -glucosidase was stably achieved 3 

times over 39 days. Thus, it was 

demonstrated that A. oryzae RIB40-TF was 

stably maintained in the LSI system, and 

that it secreted active enzyme over this 

period.  

     The maximum specific activity of 

-glucosidase produced by RIB40-TF was 

1.36 U/ml-medium (Fig. 2A). By 

comparison, the -glucosidase specific 

activities reported for Aureobasidium 

pullulans (5), Alternaria alternata (6), 

Aspergillus terreus (29), Aspergillus niger 

(30), and Schizophyllum commune (31) are 

0.46, 2.5, 2.18, 8.5, and 22.2 U/ml-medium, 

respectively. Therefore, our -glucosidase 

titer is currently insufficient for practical 

production purposes. It will be necessary to 

modify the media composition, culture 

condition, and strain to achieve competitive 

production rates. 

 

     We express our sincere thanks to the 

Ozeki Co., for providing the pNEN142 

Fig. 3. Repeated batch production of 

-glucosidase by A. oryzae RIB40-TF 

in the LSI system. At days 15 and 27, 

300 ml of YPD medium was 

exchanged with fresh medium. 
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vector, and Director Nobuo Ichimaru and Mr. 

Tadashi Hiraide of Matsumoto 

Yushi-Seiyaku Co., for the kind gift of 

microspheres. 
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