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A gene encoding endo-1,3-β-glucanase was cloned from Cellulosimicrobium cellulans DK-1 
genomic DNA. Analysis of the deduced amino acid sequence revealed that the full-length enzyme has 
383 amino acids composing of two functional domains, a catalytic domain classified as glycoside 
hydrolase family 16 and a carbohydrate-binding module (CBM) classified as CBM family 13. The 
mass spectrometry analysis revealed that the enzyme purified from a crude enzyme preparation 
originated from Cellulosimicrobium cellulans DK-1 (Pang et al., J. Biol. Macromol. 4, 57-66, 2004) 
corresponds to the catalytic domain which should be liberated from the CBM during the crude 
enzyme preparation. 
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Introduction 
Endo-1,3-β-glucanases (EC 3.2.1.6 and EC 

3.2.1.39) are widely distributed among bacteria 
and higher plants. In plants, 1,3-β-glucanases are 
thought to be important to protect against fungal 
invasion through the ability to hydrolyze 1,3-β-
glucan, which is a major cell wall component [1]. 
In bacteria, they are used as cell-wall degrading 
enzymes for growing on viable yeast and fungal 
cells [2]. Although both enzymes catalyze the same 
hydrolytic reaction, bacterial and plant enzymes 
belong to different glycoside hydrolase (GH) 
families, GH16 and GH17, respectively, based on 
their amino acid sequences [3]. The bacterial 
enzyme has a β-sandwich architecture, while the 
plant enzyme adopts a (β/α)8 TIM-barrel fold [4, 
5]. Some glucanases are multi-domain proteins 
that include not only a catalytic domain but also a 
carbohydrate-binding module (CBM). For the 
catalytic function, CBMs are considered to play a   
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role in maintaining the substrate in proximity with 
the enzyme [6], but details about its contribution to 
the catalytic activity, especially for type C CBMs, 
remain to be elucidated. 

We purified endo-1,3-β-glucanase from a 
yeast cell wall lytic enzyme, Tunicase®, a 
commercially available crude enzyme preparation 
originated from Cellulosimicrobium cellulans DK-
1 (previously classified as Arthrobacter sp.) [7]. 
The N-terminal amino acid sequence of this 
enzyme was found to be Ala-Pro-Gly-Asp-Leu-
Leu-Trp-Ser-Asp-Glu-, which is the same as that 
of endo-1,3-β-glucanase from Oerskovia 
xanthineolytica LL G109 [8]. The first 63 amino 
acid residues encoded on the gene from the 
initiation-codon was not present on the mature 
enzyme from Oerskovia xanthineolytica LL G109, 
suggesting that the region is removed by 
proteolytic cleavage [8]. Pang et al. reported that 
the molecular mass of the enzyme purified from 
Tunicase® was estimated to be 32.5 kDa by SDS- 
PAGE and 21.7 kDa by gel-filtration analysis [7]. 
The enzyme was crystallized, and the diffraction    
The abbreviations used are: GH, glycoside 
hydrolase; CBM, carbohydrate-binding module, 
MALDI-TOF MS, matrix-assisted laser desorption 
ionization/time-of flight mass spectrometry. 
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data were collected to a resolution of 1.66 Å [9]. 
The primary structure of this enzyme was needed 
to determine the crystal structure. So far, the 
crystal structure available for bacterial endo-1,3-β-
glucanases is the enzyme from alkaliphilic 
Nocardiopsis sp. [5]. 
 
Materials and Methods 
Gene cloning 

Genome DNA was prepared from the culture 
of Cellulosimicrobium cellulans DK-1 as 
described previously [10]. Based on the nucleotide 
sequence of endo-1,3-β-glucanase from Oerskovia 
xanthineolytica LL G109, primers were designed 
to amplify the endo-1,3-β-glucanase gene by the 
PCR on the genome DNA (Table 1). The 
respective PCR fragments were sequenced. 
 
Table 1. Oligonucleotides used as primers in PCR  
Primer code Nucleotide sequence (5’→3’) 
40F1           gcgaattcggccgccgcggcagcgctcgcc 
40F2  ccgaattcgcgcccggcgacctcctgtg 
40F3           cggaattcggcgagatcgacatcatggag 
40F4        gcgaattcggcaagtgcctcgacgtgcgc 
40R1           ccggatccctccatgatgtcgatctcgcc 
40R2   ccggatccgcggacggtcccgtcggagc 
40R3   gaggatccgcgcacgtcgaggcacttgcc 
40R4          gcggatcctcagagcgtccactgctgggc 
40R5         ccggatccgtgccccgcccgcgcggccggt 
40R6  tcggatccgagccaggtcagccgggtg 
 
Mass spectrometry 

MALDI-TOF MS analysis was carried out 
using a REFLEX III mass spectrometer (Bruker 
Daltonics) equipped with a 337 nm nitrogen laser, 
and pulsed ion extraction. Spectra were obtained in 
linear- or reflector-positive mode with an 
accelerating voltage of 20 kV. Sinapinic acid 
(Fluka) was prepared as a saturated solution in a 
2:1 (v/v) mixture of 0.1% trifluoroacetic 
acid/acetonitrile and used as the matrix. A 1-μl 
aliquot of 1:1 (v/v) matrix/sample mixture was 
deposited onto the MALDI plate and dried up at 
room temperature. 
 
Results and Discussion 

The primers were designed for the N-terminal 
and conserved regions in bacterial endo-1,3-β-

glucanase on the enzyme from Oerskovia 
xanthineolytica LL G109 (GenBank, AF052745), 
and the gene encoding endo-1,3-β-glucanase was 
amplified by PCR using genomic DNA from 
Cellulosimicrobium cellulans DK-1. The 
nucleotide sequence from the site corresponding to 
the N-terminus, Ala-Pro-Gly-, revealed by amino-
acid sequencing of the purified protein [7] to the 
stop-codon is shown in Fig. 1. The protein is 
composed of 383 amino acids and has a molecular 
mass of 40.8 kDa (Fig. 1). The N-terminal and C-
terminal regions correspond to the catalytic 
domain, GH16, and the carbohydrate-binding 
domain, CBM13, respectively, both of which are 
connected by a Gly/Ser-rich linker. In comparison 
with the amino acid sequence of the corresponding 
region of endo-1,3-β-glucanase from Oerskovia 
xanthineolytica LL G109, the three amino acids, 
Asn246, Leu335, and His363, are different (Fig. 
1). 

The sequence alignment to other endo-1,3-β-
glucanases previously analyzed indicates that the 
catalytic residues correspond to Glu119, Asp121, 
and Glu124, which are conserved among GH16 
enzymes [11]. In addition, Met123 would be a 
specific residue in the active site of the GH16 
laminarinase subfamily, not present in that of the 
GH16 lichenase subfamily. Based on the 
alignment to the CBM13 of xylanase [12], the C-
terminal CBM13 would consist of a tandem of 
three imperfect repeats, in which three disulfide 
bonds, Cys268-Cys287, Cys309-Cys328, and 
Cys353-Cys373, play an important role in the 
three-dimensional structure. The proteins in 
CBM13 are classified into type C CBMs, small 
sugar binding CBMs, and would have β-trefoil 
structures [13]. 

The MALDI-TOF MS spectrometry analysis 
showed that the molecular mass of the purified 
enzyme reported previously [7] was 27,696.0 Da, 
which corresponds to Ala1 – Thr256, the catalytic 
domain. The value was slightly different from 
those estimated by SDS-PAGE and gel-filtration 
analysis [7]. The purified enzyme should be 
liberated from the CBM during the preparation of 
Tunicase®. Because neutral proteases extracted 
from Bacillus sp. are included in Tunicase®, they 
should catalyze the full-length endo-1,3-β- 
glucanase and generate only the catalytic domain.  
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 1   CCGCGACGTCGGCCGCCGCCGCACCCGGCGACCTCCTGTGGTCCGACGAGTTCGACGGC 
 A T S A A A A P G D L L W S D E F D G  13 
 ↑ N-terminus 
 60 GCGGCGGGCTCGGCGCCGAACCCCGCCGTCTGGAACCACGAGACCGGTGCGCACGGGTGG 
 A A G S A P N P A V W N H E T G A H G W  33 
 120  GGCAACGCCGAGCTGCAGAACTACACGGCCTCGCGCGCCAACTCCGCGCTCGACGGCCAG 
 G N A E L Q N Y T A S R A N S A L D G Q  53 
 180  GGCAACCTCGTCATCACCGCGCGCCGCGAGGGCGACGGGTCGTACACGTCGGCGCGCATG 
 G N L V I T A R R E G D G S Y T S A R M  73 
 240  ACGACCCAGGGGAAGTACCAGCCGCAGTACGGGCGCATCGAGGCGCGCATCCAGATCCCG 
 T T Q G K Y Q P Q Y G R I E A R I Q I P  93 
 300  CGGGGCCAGGGGATCTGGCCGGCGTTCTGGATGCTCGGCGGGAGCTTCCCCGGGACGCCG 
 R G Q G I W P A F W M L G G S F P G T P  113 
 360  TGGCCGTCGTCGGGCGAGATCGACATCATGGAGAACGTCGGGTTCGAGCCGCACCGCGTG 
 W P S S G E I D I M E N V G F E P H R V  133 
 420  CACGGCACGGTGCACGGCCCGGGGTACTCCGGCGGCTCCGGCATCACGGGCATGTACCAG 
 H G T V H G P G Y S G G S G I T G M Y Q  153 
 480  CACCCGCAGGGCTGGTCGTTCGCGGACACGTTCCACACGTTCGCGGTCGACTGGAAGCCG 
 H P Q G W S F A D T F H T F A V D W K P  173 
 540  GGGGAGATCACCTGGTTCGTCGACGGCCAGCAGTTCCACCGCGTCACGCGCGCGAGCGTC 
 G E I T W F V D G Q Q F H R V T R A S V  193 
 600  GGCGCGAACGCCTGGGTGTTCGACCAGCCGTTCTTCCTCATCCTCAACGTCGCGGTCGGC 
 G A N A W V F D Q P F F L I L N V A V G  213 
 660  GGGCAGTGGCCGGGCTACCCCGACGGCACGACCCAGCTCCCGCAGCAGATGAAGGTCGAC 
 G Q W P G Y P D G T T Q L P Q Q M K V D  233 
 720  TACGTGCGCGTCTACGACAACGGCTCGGGCTCGTCGAACCCGGGGAACCCCGGCACCGGC 
 Y V R V Y D N G S G S S N P G N P G T G  253 
 780  CTGCCGACGGGGACCGGCGCGGTGCGCGCCGCGAACGGCATGTGCGTGGACGTCCCGTGG 
 L P T G T G A V R A A N G M C V D V P W  273 
 840  GCGGACCCGACCGACGGGAACCCGGTGCAGATCGTCACGTGCAGCGGCAACGCCGCCCAG 
 A D P T D G N P V Q I V T C S G N A A Q  293 
 900  ACCTGGACGCGTGGCTCCGACGGGACCGTCCGCGCGCTCGGCAAGTGCCTCGACGTGCGC 
 T W T R G S D G T V R A L G K C L D V R  313 
 960  GACGGCTCGACGACGCGCGGGGCGGCCGTGCAGGTGTGGACGTGCAACGGGACGGGCGCG 
 D G S T T R G A A V Q V W T C N G T G A  333 
 1020  CAGCTGTGGGCCTACGACGCGGGGAGCAAGGCGCTGCGCAACCCGCAGTCCGGGCTCTGC 
 Q L W A Y D A G S K A L R N P Q S G L C  353 
 1080  CTCGACGCCACGGGCGGCGCGCCCCTGCACGACGGCCAGCGGCTGCAGACCTGGACGTGC 
 L D A T G G A P L H D G Q R L Q T W T C  373 
 1140  AACGGCACGACCGCCCAGCAGTGGACGCTCTGAC 
  N G T T A Q Q W T L 383 
 
Fig. 1. Nucleotide and deduced amino acid sequences of endo-1,3-β-glucanase from Cellulosimicrobium 
cellulans DK-1. All the base sequence determined is shown, and the number is indicated on the left. The 
N-terminal amino acid of purified enzyme is indicated by vertical arrow, and the CBM region is 
underlined. The number of amino acid from the N-terminus is indicated in italic on the right. The bases and 
amino acids different from those of endo-1,3-β-glucanase from Oerskovia xanthineolytica LL G109 are 
shaded and boxed, respectively. 
 
This is supported by the results that the enzyme 
corresponding to the full-length endo-1,3-β-
glucanase was purified from the crude enzyme 
preparation without addition of the neutral 
proteases (data not shown). 

In the preliminary structure determination for 
the crystal obtained [9], the deduced primary 
structure corresponding to Ala1 - Ser242 could be 
well assigned on the electron density map, and the 
C-terminal region was suggested to be disordered. 
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The present primary structure information can 
make it possible to determine the three-
dimensional structure of the catalytic domain of 
endo-1,3-β-glucanase from Cellulosimicrobium 
cellulans DK-1 (manuscript in preparation). In 
addition, the structure-function analysis of the full-
length endo-1,3-β-glucanase will clarify the role of 
CBM for the glucanase function, which is still 
controversial [6]. We now construct the 
overexpression system of the full-length endo-1,3-
β-glucanase, the catalytic domain, and the CBM in 
E. coli for further investigation. 
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